181 Ta(18 O, 18 N γ) **2020Zi03** Type Author Citation Literature Cutoff Date Full Evaluation R. Spitzer, J. H. Kelley ENSDF 30-Jun-2021 2020Zi03: XUNDL dataset compiled at TUNL (2020). The authors investigated the level structure of ^{18}N and measured the lifetime of the E_x =2404 keV state in ^{18}N via DSAM techniques. A beam of 126 MeV 18 O ions from the GANIL cyclotrons impinged on a 6.64 mg/cm 2 181 Ta target. The 18 N ions that scattered at θ =45° (\pm 6°) were momentum analyzed using the VAMOS++ ion tracking system. A collection of γ -ray detectors from the AGATA and PARIS arrays plus two large-volume LaBr $_3$ detectors provided a high granularity for γ -ray energy and angle measurement. The γ -ray detectors were aligned along the VAMOS++ axis at $\theta_{\rm rel.}$ =115°-175° (AGATA) and $\theta_{\rm rel.}$ =90°(PARIS+LaBr $_3$). The γ rays detected in coincidence with 18 N ions in the VAMOS++ spectrometer were analyzed. The authors developed a Monte Carlo analysis of the Doppler shift attenuation spectrum that accounts for population (and subsequent deexcitation) of levels via low-momentum transfer and deep-inelastic reaction processes. The accuracy of the method relies on the precise angle determination between the scattered projectile and the Doppler-shifted γ ray. 2020Zi01: Extension of analysis presented in (2020Zi03) except the γ -ray spectrum is shown over a broader range. Additional unplace transitions are discussed corresponding to E_{γ} =1720, 2073, 2301 keV. See analysis of the ¹⁸O+¹⁸¹Ta fragmentation process in (2010Mi08). ## ¹⁸N Levels | E(level) [†] | J^{π} | T _{1/2} | Comments | |-----------------------|-----------|------------------|---| | 0.0 | 1- | | | | 114.6 | (2^{-}) | | | | 587.3 | (2^{-}) | | | | 741.6 | (3^{-}) | | | | 2404.6 | | 0.11 ps +51-7 | $T_{1/2}$: From τ =0.16 ⁺⁷⁴ ₋₁₀ ps and E_{γ} =1663.0 keV 8 (2020Zi03). | [†] From (2020Zi03) Figure 5. #### $\gamma(^{18}N)$ | E_{γ}^{\dagger} | $E_i(level)$ | \mathbf{J}_i^{π} | E_f J_f^{π} | Comments | |----------------------------------|--------------|----------------------|-------------------|--| | 114.6 <i>I</i> | 114.6 | (2^{-}) | 0.0 1 | | | 154.6 <i>3</i> | 741.6 | (3^{-}) | 587.3 (2-) | | | 472.7 2 | 587.3 | (2^{-}) | 114.6 (2-) | E_{γ} : From ¹⁸ C β^- (1991Pr03). | | 627 <i>1</i> | 741.6 | (3^{-}) | 114.6 (2-) | E _{γ} : From ${}^{9}\text{Be}({}^{11}\text{B},2\text{p}\gamma)$ (2008Wi05). | | ^x 1566 [‡] 1 | | | | | | 1663.0 8 | 2404.6 | | 741.6 (3-) | E_{γ} : From (2020Zi03); see also 1662.3 keV 3 in (2020Zi01). | | ^x 1720 [‡] | | | | | | ^x 2073.4 8 | | | | | | x2300.9 8 | | | | | [†] From (2020Zi03) except where indicated. [‡] Placement of transition in the level scheme is uncertain. $^{^{}x}$ γ ray not placed in level scheme. # 181 Ta(18 O, 18 N γ) 2020Zi03 ## Level Scheme